Cho tứ giác ABCD.Gọi E,F lần lượt là trung điểm của các cạnh AB,CD ; G là trung điểm của EF.CM rằng: a) vecto AB+AC+AD=4AG b) vecto GA+GB+GC+GD=0 c)vecto OG=1/4(OA+OB+OC+OD), với O là điểm tùy ý
cho tam giác ABC
tìm điểm O sao cho : vecto OA+vecto OB+vecto OC= vecto 0
tìm điểm K sao cho : vecto KA+2 vecto KB= vecto CB
tìm điểm M sao cho : vecto MA+ vecto MB+ 2 vecto MC = vecto 0
Cho tứ giác ABCD .Gọi M,N,I,J lần lượt là trung điểm của các cạnh AD,BC,AC và BD.Chứng minh rằng: a) vecto AB+DC =2MN b) vecto AB-DC=2IJ c) vecto NA+ND=BA+CD d) vecto MA+IJ=NB
Cho tứ giác ABCD, c/m tứ giác ABCD là hbh khi và chỉ khi vecto OA+ vecto OB+vecto OC +vecto OD =0 (O tuỳ ý)
Cho hình vuông ABCD cạnh a a) xác định điểm K thỏa mãn vecto KA+ vecto KB+ vecto KC+4vecto KD = vecto 0 b) tìm {M} thỏa mãn : | vecto MA+ vecto MB + vecto MC +4vecto MF| = 2a c) tìm {N} thỏa mãn : |2 vecto NA- vecto NB + vecto NC | = | vecto ND +vecto NC|
***Cho hình bình hành ABCD ,k là một số thực thay đổi. Tìm tập hợp điểm M biết:
a) vecto MA +k vecto MC = k vecto MC
b) vecto MA+ (1-k)vectoMB + k vecto MC = vecto 0
c) |vecto MA + vectoMB| = | vectoMC + vectoMD|
d) |2vectoMA - vectoMB - vectoMC| = | vectoMC + 2vectoMD|
Cho tam giác ABC nội tiếp đường tròn tâm (O) H là trực tâm tam giác ABC. điểm D đối xứng với B qua O
a/ So sánh vecto AD và vecto HC
b/ C/m : vecto OA - vecto OH= vecto OD - vecto OC .
Cho tam giác ABC trọng tâm G CMR: vecto MG = 1/3( vecto MA + vecto MB + vecto MC) với M bất kì
giúp mình với các thần đồng !!
Cho G là trọng tâm tam giác ABC. CM:
a) vecto GA + vecto GB + vecto GC= vecto 0
b) vecto MA + vecto MB + vecto MC= 3 vecto MG ( với mọi M)