Cho hình bình hành ABCD có tâm là O. Gọi M, N lần lượt là trung điểm của BC, DC. Chứng minh:
a) \(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\)
b) \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+2\overrightarrow{AB}\right)\)
c) \(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
a)Ta có:
\(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{CO}+\dfrac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OC}+\overrightarrow{OD}\right)\)
\(=\overrightarrow{CO}+\dfrac{1}{2}.2\overrightarrow{OC}\)
\(=\overrightarrow{0}\)
\(\RightarrowĐPCM\)
b) Ta có:
\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+2\overrightarrow{AB}\right)\)
\(\Rightarrow2\overrightarrow{AM}=\overrightarrow{AD}+2\overrightarrow{AB}\) (1)
Mà \(2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\)(2)
Từ (1)(2) =>\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AC}+\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{AC}\)
\(\RightarrowĐPCM\)
c) Ta có:
\(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{1}{2}\left(\overrightarrow{AB}+2\overrightarrow{AC}+\overrightarrow{AD}\right)\)
\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AC}+\overrightarrow{AO}\)
\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
\(\RightarrowĐPCM\)