Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy D đối xứng với B qua O.
a) Chứng minh tứ giác ABMD là hình bình hành.
b) Chứng minh tứ giác AMCD là hình thoi.
c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang.
d) Chứng minh \(\widehat{NHK}\) = 90o
Cho hình vuông ABCD, trên cạnh AB, BC, CD, DA lấy các điểm M, N, E, F sao cho AM = CN = CE = AF. a) Chứng minh tứ giác ANCF là hình bình hành b) Chứng minh MNEF là hình chữ nhật c) Gọi H là hình chiếu của A trên BF. Tính góc CHM (gợi ý câu c chứng minh góc CHB= góc AHM)
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB,AC.
a) Chứng minh tứ giác BMNC là hình thang. Tính SBMNC biết SABC= 80cm2, BC=20cm2.
b) Gọi I là trung điểm của AM; K là điểm đối xứng của M qua I. Chứng minh BMKN là hình bình hành.
c) Gọi G là giao điểm của BN và CM. Chứng minh AG, KN và BC đồng quy.
Bài 2: Cho hình bình hành ABCD có CD = 16 cm, đường cao vẽ từ A đến cạnh CD bằng 12 cm. \
a,Tính diện tích hình bình hành ABCD.
b,Gọi M là trung điểm AB, Tính diện tích tam giác ADM.
c,DM cắt AC tại N. Chứng minh rằng DN= 2NM
d, Tính diện tích tam giác AMN.
Cho hình bình hành ABCD. Gọi K và L là hai điểm thuộc cạnh BC sao cho BK = KL = LC. Tính tỉ số diện tích của
a) Các tam giác DAC và DCK
b) Tam giác DAC và tứ giác ADLB
c) Các tứ giác ABKD và ABLD
Cho hình bình hành MNPQ có MN = 2MQ và ∠M = 120o. Gọi I, K lần lượt là trung điểm của MN và PQ; A là điểm đối xứng của Q qua M.
a) Tứ giác MIKQ là hình gì? Vì sao?
b) C/m: ΔAMI là Δ đều.
c) C/m: tứ giác AMPN là hcn.
d) Cho AI = 4cm. Tính S của hcn AMPN.
Cho tam giác ABD vuông tại A có AB <AD . M là trung điểm của BD . GọiC là điểm đối xứng với A qua M
a, CM tứ giác ABCD là hình chữ nhật
b, Trên tia đối của tia DA lấy E sao cho DE=DA. Gọi I là trung điểm của CD CM: IB=IE
c, gọi AH là đường cao của tam giác ABD và K là điểm đối xứng với A qua H. CM: tứ giác BDCK là hình thang cân
d , chứng minh rằng k,C,E thẳng hàng
Cho hình vuông ABCD, điểm E đối xứng với A qua D. Kẻ AH vuông góc với BE (H thuộc BE ) . Gọi I, K lần lượt là trung điểm của AH và EH .Chứng minh rằng:
a) Tam giác ACE là tam giác vuông cân.
b) Tứ giác BCKI là hình bình hành.
Giúp mình vs mọi người ơi mình cần gấp lắm THANKS TRƯỚC NHA!
Cho hình bình hành ABCD, hai đường chéo AC và BD cắt nhau tại O. Xét các tam giác có đỉnh lấy trong số các điểm A, B, C, D, O. Hãy chỉ ra các tam giác có diện tích bằng nhau và giải thích vì sao ?