Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
Cho hình vuông ABCD và 2018 đường thẳng cùng có tính chất chia hình vuông này thành hai tứ giác có tỉ số diện tích bằng 2/3. CMR: Có ít nhất 505 đường thẳng trong 2018 đường thẳng trên đồng quy
Cho hình vuông ABCD và 2017 đường thẳng, mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là 2:3. Chứng minh: trong 2017 đường thẳng đó có 505 đường thẳng đi qua 1 điểm
Cho hình vuông ABCD và 2018 đường thẳng có cùng tính chất chia hình vuông thành 2 tứ giác có tỉ số diện tích là 2/3. CMR: có ít nhất 505 đường thẳng trong 2018 đưởng thẳng đồng qui
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình bình hành ABCD, E là điểm bất kì trên cạnh AB ( E≠A, E≠B ). Tia DE cắt AC ở F, cắt CB ở G.
a) Chứng minh ∆AEF ∆CDF; ∆AFD ∆CFG.
b) Chứng minh FD2 = FE.FG.
c) Từ F kẻ đường thẳng song song với đường thẳng AB cắt AD tại điểm H. Chứng minh 1:AE+1:AB=1:HF