Cho hình bình hành ABCD có \(\widehat{A}=\alpha>90^0\). Ở phía ngoài hình bình hành vẽ các tứ giác đều ADF, ABE
a) Tính \(\widehat{EAF}\)
b) Chứng minh rằng tam giác CEF là tam giác đều
Cho hình bình hành ABCD. Trên cạnh AB và CD lần lượt lấy các điểm E; F sao cho AE = CF.
a)Chứng minh: AF = EC.
b)Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh tứ giác EMFN là hình bình hành.
c) Ở phía ngoài của hình bình hành dựng 2 tam giác đều ADP và DCQ. Chứng minh rằng tam giác BPQ là tam giác đều.
cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) tam giác ADM=CBN b) góc ADM=NCA và IM//CN
Giúp mình với!
Cho hình bình hành ABCD. Dựng các tam giác đều ADE,DCF về phía ngoài hình bình hành. chứng minh BEF đều
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm các đoạn OA, OB, OC, OD
1) Chứng minh rằng tứ giác MNPQ là hình bình hành
2) Chứng minh rằng các tứ giác ANCQ, BPDM là các hình bình hành
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°