Bài 5. Hình chữ nhật - Hình vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Giải thích các khẳng định sau:

a) Nếu \(\widehat {{\rm{BAD}}}\) là góc vuông thì \(\widehat {{\rm{ADC}}}\) và \(\widehat {{\rm{ABC}}}\) cũng là góc vuông.

b) Nếu \(AC = BD\) thì \(\widehat {{\rm{BAD}}}\) vuông.

Hà Quang Minh
8 tháng 9 2023 lúc 22:05

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\), \(BD\)

\(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\)

Nếu \(\widehat {{\rm{BAD}}} = 90^\circ \) suy ra \(AB \bot AD\)

Mà \(AB\) // \(CD\); \(AD\) // \(BC\)

Suy ra \(AD \bot CD;\;AB \bot BC\)

Suy ra \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)

b) Xét \(\Delta BAD\) và \(\Delta CDA\) ta có:

\(BA = CD\) (gt)

\(AD\) chung

\(BD = AC\) (gt)

Suy ra \(\Delta BAD = \Delta CDA\) (c-c-c)

Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{CDA}}}\) (hai góc tương ứng)

Mà  \(\widehat {BAD} + \widehat {CDA} = 180^\circ \)(do \(AB\) // \(CD\) , cặp góc trong cùng phía)

Suy ra \(\widehat {BAD} = \widehat {CDA} = 90^\circ \)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết