Bài 5. Hình chữ nhật - Hình vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho tam giác \(ABC\) vuông tại \(A\) (\(AB < AC\). Gọi \(D\) là trung điểm của \(BC\). Vẽ \(DE\) // \(AB\), vẽ \(DF\) // \(AC\) \((E \in AC\); \(F \in AB)\). Chứng minh rằng:

a) Tứ giác \(AEDF\) là hình chữ nhật

b) Tứ giác \(BFED\) là hình bình hành

Hà Quang Minh
8 tháng 9 2023 lúc 22:21

a) Ta có:

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat {{\rm{BAC}}} = 90^\circ \) và \(AB \bot AC\)

Mà \(DE\) // \(AB\) ; \(DF\) // \(AC\)

Suy ra \(DE \bot AC;\;DF \bot AB\)

Suy ra \(\widehat {DEA} = \widehat {DFA} = 90^\circ \)

Tứ giác \(AEDF\) có \(\widehat {BAC} = \widehat {DEA} = \widehat {DFA} = 90^\circ \) nên là hình chữ nhật

b) Vì \(AEDF\) là hình chữ nhật (cmt)

Suy ra \(AE = DF\); \(AF = DE\); \(AF\) // \(DE\); \(AE\) // \(DF\)

Vì \(DE \bot AC;\;DF \bot AB\) (cmt)

Suy ra \(\widehat {DEC} = \widehat {BFD} = 90^\circ \)

Xét \(\Delta BFD\) và \(\Delta DEC\) ta có:

\(\widehat {{\rm{BFD}}} = \widehat {{\rm{DEC}}} = 90^\circ \) (cmt)

\(BD = DC\) (gt)

\(\widehat {{\rm{FBD}}} = \widehat {{\rm{EDC}}}\) (do \(DE\) // \(BF\) )

Suy ra \(\Delta BFD = \Delta DEC\) (ch – gn)

Suy ra \(BF = DE\); \(DF = EC\) (hai cạnh tương tứng)

Xét tứ giác \(BFED\) ta có:

\(BF\) // \(DE\) (do \(AB\) // \(DE\))

\(BF = DE\) (cmt)

Suy ra \(BFED\) là hình bình hành


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết