a: Xét tứ giác ANMD có
AN//MD
AN=MD
Do đó: ANMD là hình bình hành
mà AN=AD
nên ANMD là hình thoi
b: Đề sai rồi bạn
a: Xét tứ giác ANMD có
AN//MD
AN=MD
Do đó: ANMD là hình bình hành
mà AN=AD
nên ANMD là hình thoi
b: Đề sai rồi bạn
cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành. AI VẼ HÌNH GIÚP MÌNH VỚI
Cho hình bình hành ABCD có AB=2AD. Gọi M, N lần lượt là trung điểm của AB,CD
a, Chứng minh tứ giác AMND là hình bình hành
b, Chứng minh tứ giác AMND là hình thoi
c,Gọi K là điểm đối xứng với A qua D. Gọi Q là điểm đối xứng với N qua D. Tứ giác ANKQ là hình gì? Vì sao?
d, Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCM là hình thang cân
cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành
Bài 1:Cho tứ giác ABCD, M, N, I, K lần lượt là trung điểm AB, BC, CD, DA. Chứng minh MNIK là hình bình hành.
Bài 2. Cho điểm D nằm bên trong tam giác đều ABC. Vẽ các tam giác đều BDE, CDF (E, F, D nằm cùng phía đối với BC). Chứng minh rằng AEDF là hình bình hành.
Bài 3. Cho hình bình hành ABCD, hai đường chéo không vuông góc với nhau. Vẽ điểm E đối xứng với A qua BD. Chứng minh rằng 4 điểm B, C, E, D là 4 đỉnh của một hình thang cân.
Help me, mai đi hk r
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
Tứ giác ABCD có E,F là trung điểm của AB,CD. M,N,P,Q lần lượt là trung điềm của đoạn AF,CE,BF,DE.
Chứng minh: MNPQ là hình bình hành
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.