Vì \(\left\{ \begin{array}{l}MN \bot MC\\BC \bot MC\end{array} \right. \Rightarrow MN//BC\) (quan hệ từ vuông góc đến song song).
Xét tam giác \(ABC\) có\(MN//BC\) nên theo hệ quả của định lí Thales ta có:
\(\frac{{MN}}{{BC}} = \frac{{AM}}{{AC}} \Leftrightarrow \frac{4}{x} = \frac{3}{9} \Rightarrow x = \frac{{4.9}}{3} = 12\).
Xét tam giác \(ABC\) vuông tại \(C\) ta có:
\(A{C^2} + B{C^2} = A{B^2}\) (định lí Py – ta – go)
\( \Leftrightarrow {9^2} + {12^2} = {y^2} \Rightarrow y = \sqrt {81 + 144} = 15\)
Do đó, \(x - y = 12 - 15 = - 3\)