AB \(\perp\) AC (gt)
Có E nằm giữa A và C
=> AE<AC
=> BE<BC ( qh giữa đg xiên và hình chiếu ) (1)
Có D nằm giữa A và B
=> AD<AB
=> DE<BE ( qh giữa đg xiên và hc ) (2)
Từ (1) và (2) => DE<BC
a) \(\widehat{BEC}\) là góc ngoài của tam giác vuông ABE nên \(\widehat{BEC}\) là góc tù.
Do đó, tam giác BEC có BE < BC (BE là cạnh đối diện với góc tù) (1)
b) Ta có: AD, AB lần lượt là hình chiếu của ED, EB lên đường thẳng AB. Vì AD < AB => ED < EB (2)
Từ (1) và (2) ta có: DE < BC