Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thị Hiền Luân

cho hệ pt \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

xác định giá trị của m để hệ có nghiệm duy nhất \(\left(x,y\right)\) thỏa mãn \(x+y\)>0

Võ Thị Hiền Luân
20 tháng 1 2021 lúc 21:19

giúp mik đc ko, mikk cần gấp

hihi

Nguyễn Lê Phước Thịnh
20 tháng 1 2021 lúc 21:49

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

Trương Huy Hoàng
20 tháng 1 2021 lúc 21:55

\(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(m-1\right)x-m+mx=2\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}mx-x-m+mx=2\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2mx-x=2+m\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\left(2m-1\right)=2+m\\y=m-mx\end{matrix}\right.\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=m-m.\dfrac{2+m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Vậy hpt có nghiệm duy nhất (x; y) = ...

Ta có: x + y > 0

\(\Leftrightarrow\) \(\dfrac{m^2-2m+2}{2m-1}>0\)

\(\Leftrightarrow\) \(\dfrac{\left(m-1\right)^2+1}{2m-1}\) > 0

\(\Leftrightarrow\) 2m - 1 > 0 (vì (m - 1)2 + 1 > 0 với mọi m)

\(\Leftrightarrow\) 2m > 1

\(\Leftrightarrow\) m > \(\dfrac{1}{2}\)

Kết hợp với m \(\ne\) \(\dfrac{1}{2}\) ta có: m > \(\dfrac{1}{2}\) thì hpt có nghiệm duy nhất (x;y) thỏa mãn x + y > 0

Vậy m > \(\dfrac{1}{2}\)

Chúc bn học tốt! (Chắc đúng :D)


Các câu hỏi tương tự
anh phạm
Xem chi tiết
Hoàng Thị Thanh Huyền
Xem chi tiết
Linh Bùi
Xem chi tiết
Tranggg Nguyễn
Xem chi tiết
Annh Phươngg
Xem chi tiết
Quy Vu Thi
Xem chi tiết
My Nguyễn
Xem chi tiết
Nussi Nga
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết