Cho hệ phương trình:
\(\begin{cases} x+my=2\\ mx- 3my=3m+3 \end{cases} \)
Xác định giá trị của m để hệ có nghiệm x,y thỏa mãn y = 8\(x^2\)
Xét hệ phương trình:
a) CMR với mọi m hệ đều có nghiệm
b) Tìm m để hệ có nghiêm với điều kiện x>0 và y>0
c) Tim m để hệ có nghiệm (x,y) thỏa mãn x=
Cho hệ phương trình:\(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\end{matrix}\right.\) (m là tham số)
a.Giải hệ phương trình trên với m=1
b.Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x+y=9
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Giải hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)với m là tham số
a.Giải hệ phương trình khi m=-1
b.Tìm các giá trị nguyên của m để hệ phương trình có nghiệm (x;y) thỏa mãn \(x^2+2y^2=18\)
Cho hệ phương trình :
mx+4y=9 và x+my=8
a, Giải hệ phương trình với m=1.
b, Tìm m để hệ phương trình có nghiệm (1;3)
c, Tìm m để hệ phương trình có nghiệm duy nhất . Tìm nghiệm đó
Cho hệ phương trình \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
Với giá trị nào của m để hệ có nghiệm duy nhất (x;y) thỏa mãn 2x+y+\(\frac{38}{m^2-4}\)=3