\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=3\\x+y+xy=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-2b=3\\a+b=1\end{matrix}\right.\) \(\Rightarrow b=1-a\)
\(\Rightarrow a^2-2\left(1-a\right)=3\Leftrightarrow a^2+2a-5=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{6}\Rightarrow b=2-\sqrt{6}\\a=-1-\sqrt{6}\Rightarrow b=2+\sqrt{6}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x_0+y_0=a=-1+\sqrt{6}\Rightarrow\left(x_0+y_0+1\right)^2=6\)