a: \(AK=KB=\dfrac{AB}{2}\)
\(DI=IC=\dfrac{DC}{2}\)
mà AB=DC
nên AK=KB=DI=IC
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
=>AI=CK và AI//CK
M là trung điểm của AI
=>\(AM=MI=\dfrac{AI}{2}\)
N là trung điểm của CK
=>\(NK=NC=\dfrac{CK}{2}\)
mà AI=CK
nên AM=NI=NK=NC
AKCI là hình bình hành
=>\(\widehat{KAI}=\widehat{KCI}\)
\(\widehat{KAI}+\widehat{DAI}=\widehat{DAB}\)
\(\widehat{KCI}+\widehat{KCB}=\widehat{BCD}\)
mà \(\widehat{KAI}=\widehat{KCI};\widehat{DAB}=\widehat{BCD}\)
nên \(\widehat{DAI}=\widehat{KCB}\)
Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{DAM}=\widehat{BCN}\)
AM=CN
Do đó: ΔADM=ΔCBN
b: Sửa đề: góc MAN=góc NCM
Xét tứ giác MANC có
MA//NC
MA=NC
Do đó: MANC là hình bình hành
=>\(\widehat{MAN}=\widehat{MCN}\)
AI//CK
\(M\in AI\)
\(N\in CK\)
Do đó: IM//NC
c: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(1)
AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,KI đồng quy