ta có \(2\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{AM}=>2\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DM}\)
=>\(2\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}\\ =>2\overrightarrow{AN}=\frac{3}{2}\overrightarrow{AB}+\overrightarrow{AD}\)
=>\(\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}\)
\(\overrightarrow{AN}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}.\left(\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AD}\right)\)
\(=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AD}\)
\(=\frac{3}{4}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}\)