ĐKXĐ: ...
\(y^2=x^2\left(1-x^2\right)\le\frac{1}{4}\left(x^2+1-x^2\right)=\frac{1}{4}\)
\(\Rightarrow-\frac{1}{2}\le y\le\frac{1}{2}\Rightarrow y_{min}=-\frac{1}{2}\)
ĐKXĐ: ...
\(y^2=x^2\left(1-x^2\right)\le\frac{1}{4}\left(x^2+1-x^2\right)=\frac{1}{4}\)
\(\Rightarrow-\frac{1}{2}\le y\le\frac{1}{2}\Rightarrow y_{min}=-\frac{1}{2}\)
a) Cho hàm số \(y=x^2+2x+3+\left|x-a+1\right|\) có bao nhiêu giá trị nguyên của tham số \(a\in\left[-10;10\right]\) sao cho giá trị nhỏ nhất của hàm số lớn hơn 2
b) Tìm tất cả các giá trị của tham số m để hệ bất pt \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\) có nghiệm
c) Gọi (x;y) là nghiệm của hệ bất pt \(\left\{{}\begin{matrix}x-2y-2\le0\\4x-3y+12\ge0\\x+3y+3\ge0\\2x+y-4\le0\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức F=4x+5y-6
cho hàm số \(y=f\left(x\right)=x^2-4x+5\). tính tổng các giá trị nguyên của tham số m sao cho GTLN của hàm số \(g\left(x\right)=\left|f\left(x\right)+m\right|\) trên đoạn \([0;4]\) bằng 9
cho hai số thực x,y thỏa mãn điều kiện x-3\(\sqrt{x+1}=3\sqrt{y+2}-y\).hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức K=x+y
xác định hàm số bậc 2 có đồ thị là parabol (p) biết : a, (P) : y= ax^2 + bx + c có giá trị nhỏ nhất = -1 biết (p) đi qua điểm A( -1 ; 7) và (P) cắt Oy tại điểm có tung độ bằng 1
Tìm tập hợp các giá trị của m để hàm số y=√ ( m - 2)x^2 - 2( m- 3)x + m - 1 có tập xác định là R
a)Có bao nhiêu giá trị nguyên m để hàm số \(y=\sqrt{x^2-2mx-2m+3}\) có tập xác định là R
b) Gọi S là tập hợp các giá trị m để bất pt \(x^2-2mx+5m-8\le0\) có tập nghiệm là [a;b] sao cho b-a=4. Tổng tất cả phần tử S là
TXĐ hàm số y=\(\sqrt{\dfrac{\left|x-1\right|}{x+2}-1}\) chứa bao nhiêu số nguyên
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)