Cho hàm số \(y=\frac{2x+1}{1-x}\left(C\right)\). Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (C) tại giao điểm của đồ thị với trục tung. Tìm trên đồ thị hàm số (C) những điểm M có hoành độ lớn hơn 1 mà khoảng cách từ M đến tiếp tuyến \(\Delta\) là nhỏ nhất
Cho hàm số \(y=\frac{3x+4}{3x+3}\) có đồ thị (C). Tìm các giá trị tham số m để đường thẳng d : y = x + m cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho tam giác OAB đều ( với O là gốc tọa độ)
Cho hàm số \(y=x^3-2x^2+\left(1-m\right)x+m\left(1\right)\), m là số thực. Tìm m để đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x_1;x_2;x_3\) thỏa mãn điều kiện \(x_1^2+x^2_2+x^2_3
Cho hàm số \(y=-x^4+2\left(2+m\right)x^2-3-2m\left(1\right)\) với m là tham số. Tìm tất cả các giá trị của m để đồ thị hàm số (1) cắt trục hoành tại 4 diểm phân biệt có hoành độ lập thành một cấp số cộng
Cho hàm số \(y=\frac{x-3}{1-x}\) có đồ thị (C). Đường thẳng d đi qua A (1; -2) và có hệ số góc m. Tìm m để d cắt (C) tại hai điểm phân biệt M, N sao cho \(\overrightarrow{AM}=-2\overrightarrow{AN}\)
Cho hàm số y = x3-3x2+4 có đồ thị (C) . gọi d là đường thẳng qua I(1;2) với hệ số góc bằng k.Tập hợp các giá trị của k để d cắt (C) tại ba điểm phân biệt I,A,B sao cho I là trung điểm của đoạn thẳng AB
Cho hàm số \(y=\frac{2x-1}{x-1}\left(C\right)\), M là một điểm bất kì thuộc (C). Tiếp tuyến \(\Delta\) của (C) tại M cắt hai tiệm cận tại 2 điểm A, B. Chứng minh rằng M là trung điểm của AB và diện tích của tam giác IAB không đổi với I là tâm đối xứng của (C)
Cho hàm số \(y=x^4-5x^2+4\left(C\right)\). Tìm tất cả các điểm M trên đồ thị (C) của hàm số sao cho tiếp tuyến của (C) cắt tại 2 điểm phân biệt khác M
Cho hàm số \(y=\frac{2x-1}{x+1}\) có đồ thị (C). Tìm tất cả các giá trị của tham số m để đường thẳng \(y=mx+2\) cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O