Bài 5c.: Tương giao hai đồ thị. Biện luận số nghiệm phương trình.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồ Kim Trang

Cho hàm số \(y=\frac{2x-1}{x-1}\left(C\right)\), M là một điểm bất kì thuộc (C). Tiếp tuyến \(\Delta\) của (C) tại M cắt hai tiệm cận tại 2 điểm A, B. Chứng minh rằng M là trung điểm của AB và diện tích của tam giác IAB không đổi với I là tâm đối xứng của (C)

Thiên An
19 tháng 4 2016 lúc 13:48

Gọi \(M\left(x_0;y_0\right);y_0=\frac{2x_0-1}{x_0-1}\)

Phương trình tiếp tuyến \(\Delta\) của (C) tại M là :

\(y=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\)

\(\Delta\) cắt tiệm cận đứng x = 1 tại A có tọa độ là nghiệm của hệ

\(\begin{cases}x=1\\y=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\end{cases}\)

Do đó \(A\left(1;\frac{2x_0}{x_0-1}\right)\)

 \(\Delta\) cắt tiệm cận đứng y = 2 tại B có tọa độ là nghiệm của hệ\(\begin{cases}y=2\\2=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\end{cases}\)\(\Leftrightarrow\begin{cases}y=2\\x=2x_0-1\end{cases}\)Do đó \(B\left(2x_0-1;2\right)\)Vì \(x_A+x_B=2x_0-1+1=2x_0\) suy ra M là trung điểm đoạn ABTa có \(IA=\frac{2}{\left|x_0-1\right|};IB=2\left|x_0-1\right|\)Do tam giác AIB vuông tại I nên diện tích tam giác AIB là :\(S=\frac{1}{2}IA.IB=\frac{1}{2}.\frac{2}{\left|x_0-1\right|}.2\left|x_0-1\right|=2\)

Các câu hỏi tương tự
Nguyễn Hữu Tín
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
truong thao my
Xem chi tiết
Tạ Tương Thái Tài
Xem chi tiết
Bạch Hà An
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết
Lê Tiến Đạt
Xem chi tiết
Hiếu nguyễn
Xem chi tiết
Phạm Đức Dâng
Xem chi tiết