Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương An

Cho hàm số \(y=mx^3-3mx^2+\left(2m+1\right)x+3-m\left(m\in R\right)\) Tìm tất cả các giá trị của m để đồ thị hàm số có 2 điểm cực trị A, B sao cho khoảng cách từ \(I\left(\frac{1}{2};\frac{15}{4}\right)\) đến đường thẳng AB là lớn nhất.

Nguyễn Việt Lâm
14 tháng 10 2019 lúc 13:21

\(y'=3mx^2-6mx+2m+1\)

\(\Delta'=9m^2-3m\left(2m+1\right)=3m^2-3m>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Lấy y chia y' và lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng:

\(y=\frac{2}{3}\left(1-m\right)x+\frac{1}{3}\left(10-m\right)\Leftrightarrow2x-3y+10-\left(2x+1\right)m=0\)

\(\Rightarrow\left(d\right)\) luôn đi qua điểm có định \(M\left(-\frac{1}{2};3\right)\)

\(\Rightarrow d\left(I;\left(d\right)\right)\le IM\Rightarrow d\left(I;\left(d\right)\right)_{max}=IM\) khi \(IM\perp d\)

Phương trình IM: \(y=\frac{3}{4}x+\frac{27}{8}\)

\(\Rightarrow\frac{2}{3}\left(1-m\right).\frac{3}{4}=-1\Rightarrow m=3\)