Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Thái Thùy Linh

Cho  hàm số y=f(x) liên tục trên R có đồ thị y=f '(x) như hình vẽ:

a)Tìm min, max của hàm số g(x)=f(\(\sqrt{8-x^2-2x}-1\))

b)Xác định khoảng đb, nb, cực đại, cực tiểu của g(x)=f(x2+x)

undefined

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:35

a.

TXĐ: \(D=\left[-4;2\right]\)

\(0\le\sqrt{9-\left(x+1\right)^2}\le3\Rightarrow-1\le\sqrt{9-\left(x+1\right)^2}\le2\)

\(\Rightarrow f'\left(\sqrt{8-x^2-2x}-1\right)\le0\) ; \(\forall x\in D\)

\(g'\left(x\right)=-\dfrac{x+1}{\sqrt{8-x^2-2x}}.f'\left(\sqrt{8-x^2-2x}-1\right)\) luôn cùng dấu \(x+1\)

\(\Rightarrow g\left(x\right)\) đồng biến trên \(\left[-1;2\right]\) và nghịch biến trên \(\left[-4;-1\right]\)

Từ BBT ta thấy \(g\left(x\right)_{max}=g\left(-4\right)=g\left(2\right)=f\left(-1\right)=?\)

\(g\left(x\right)_{min}=g\left(-1\right)=f\left(2\right)=?\)

(Do đề chỉ có thế này nên ko thể xác định cụ thể được min-max)

b.

\(g'\left(x\right)=\left(2x+1\right).f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\f'\left(x^2+x\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1), ta chỉ cần quan tâm 2 nghiệm bội lẻ:

\(f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x^2+x=-1\left(vô-nghiệm\right)\\x^2+x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\) \(\Rightarrow x^2+x\ge2\) ; với \(-2\le x\le1\Rightarrow-1\le x^2+x\le2\) nên ta có bảng xét dấu:

undefined

Từ BBT ta có: \(x=-\dfrac{1}{2}\) là cực đại, \(x=-2;x=1\) là 2 cực tiểu

Hàm đồng biến trên ... bạn tự kết luận

Bình luận (0)

Các câu hỏi tương tự
Rhider
Xem chi tiết
Quân Trương
Xem chi tiết
An Hoài Nguyễn
Xem chi tiết
erosennin
Xem chi tiết
Nguyễn Thái Châu
Xem chi tiết
giang phan
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Trần Nhật Hải
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết