Cho hàm số :
\(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2}{3}x^2-\dfrac{8}{3}x+2;\left(x>0\right)\\2x+2;\left(x\le0\right)\end{matrix}\right.\)
Vẽ đồ thị của hàm số \(y=\left|f\left(x\right)\right|\) ?
Bài 1: Xét tính chẵn lẻ của hàm số :y=|x3-x|
Bài 2: ho hàm số y= f(x)=\(\left\{{}\begin{matrix}x-3,x\ge1\\2x^2-x-3,x< 1\end{matrix}\right.\) có đồ thị (C)
a) Tính f(4),f(-1)
b) Điểm nào sau đấy thuộc (c): A(4:1), b(-1,-4)
Bài 3: Cho tập hợp A= \(\left\{n\in◻\cdot\left|\right|9⋮\right\}\) B = (0;10)
a)Liệt kê các phần tử của A
b) Tính \(A\cap B\), \(A\cup B\)
(mình đag cần rất gấp)
hãy nêu cách dựng đồ thị hàm số y = |x(x-2)| từ đồ thị hàm số y = x^2
Cho hàm số \(y=f\left(x\right)\) nghịch biến trên khoảng \(\left(a;b\right)\), khi đó hàm số \(y=-f\left(x\right)\) có chiều biến thiên như thế nào trên khoảng \(\left(a;b\right)\) ?
Cho (P) : y=ax2+bx+c đi qua điểm F(0;5) và coa đỉnh I(3:-4)
a) xác định (P)
b) Khảo sát số biến thiên và vẽ đồ thị hàm số (P) vừa tìm được
vẽ đồ thị hàm số bậc 2 y=-1/2*x^2+x+3/2
Cho hàm số y=x^2 +bx+c có đồ thị P , P đi qua A(0;6) có trục đối xứng x=1 Tìm các khoảng đồng biến , nghịch biến và vẽ đồ thị x= -x^2+4x
biết rằng đồ thị hàm số \(y=x^2-6x\) cắt đồ thị hàm số\(y=-x^2-4\) tại 2 điểm \(A\left(x_A;y_A\right)\) và \(B\left(x_B;y_B\right)\). tính \(y_A+y_B\)
Cho y = f (x) = 2 - \(\left|x-3\right|\)
a) Vẽ đồ thị hàm số
b) Dựa vào đồ thị tìm điều kiện của x để f (x) > 0 , f (x) < 1