a,
b, \(x=2\) là trục đối xứng của parabol \(\Rightarrow\frac{-m}{-2}=2\Rightarrow m=4\)
a,
b, \(x=2\) là trục đối xứng của parabol \(\Rightarrow\frac{-m}{-2}=2\Rightarrow m=4\)
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
cho hàm số y = (2m-1)x + m+1 với m là tham số m khác 1/2 hãy tìm m trong mỗi trường hợp sau:
A) để đồ thị hàm số đi qua điểm m(-1;1)?
b) đồ thị hàm số cắt trục tung trục hoành lần lược tại A, B sao cho tam giác AOB là tam giác cân ?
(Toán 9 )
Tìm các tham số b,c sao cho hàm số y=x²+bx+c có trục đối xứng là x=2 và đồ thị của nó cắt trục tung tại điểm có tung độ là 6?
cho hàm số \(y=x^2-2x+2\) có đồ thị là Parabol (P) và đường thẳng d:\(y=x+m\). Gọi \(m_o\) là giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(OA^2+OB^2=10\). Tìm m
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
cho hàm số =-x^2+2x có đồ thị (P). Tìm m để đường thẳng d:y= m cắt đồ thị hàm số đã cho tại 2 điểm phân biệt A và B sao cho các điểm này đều có hoành độ dương
y=-x^2+2x+3 có đồ thị là (p)
a)lập bảng biến thiên và vẽ đồ thị (p)của hàm số đã cho
b)tìm tọa độ các giao điểm của đồ thị (p) với đường thẳng y=4x-5
cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1