\(y=\left(2m-1\right)x+m+1\left(m\ne\dfrac{1}{2}\right)\)
\(x=0\Rightarrow y=m+1\Rightarrow A\left(0;m+1\right)\Rightarrow OA=\left|m+1\right|\)
\(y=0\Rightarrow x=\dfrac{-m-1}{2m-1}=\dfrac{m+1}{1-2m}\Rightarrow B\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OB=\left|\dfrac{m+1}{1-2m}\right|\)
\(\Delta OAB-cân-tạiO\Leftrightarrow OA=OB>0\Rightarrow\left\{{}\begin{matrix}\left|m+1\right|>0\\\left|\dfrac{m+1}{1-2m}\right|>0\end{matrix}\right.\)\(\Leftrightarrow-1< m< \dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}m+1=\dfrac{m+1}{1-2m}\\m+1=\dfrac{-\left(m+1\right)}{1-2m}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(ktm\right);m=0\left(tm\right)\\m=1\left(tm\right);m=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
PT giao Ox và Oy:
\(\left\{{}\begin{matrix}y=0\Rightarrow\left(2m-1\right)x=-\left(m+1\right)\Rightarrow x=\dfrac{m+1}{1-2m}\Rightarrow A\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OA=\left|\dfrac{m+1}{1-2m}\right|\\x=0\Rightarrow y=m+1\Rightarrow B\left(0;m+1\right)\Rightarrow OB=\left|m+1\right|\end{matrix}\right.\)
\(\Delta AOB\text{ cân}\\ \Leftrightarrow OA=OB\Leftrightarrow\left|\dfrac{m+1}{1-2m}\right|=\left|m+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{m+1}{1-2m}=m+1\\\dfrac{m+1}{2m-1}=m+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(m+1\right)\left(1-2m\right)-\left(m+1\right)=0\\\left(m+1\right)\left(2m-1\right)-\left(m+1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2m\left(m+1\right)=0\\\left(m+1\right)\left(2m-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\)