Lời giải:
$f'(x)=5(\sin ^23x-4)'(\sin ^23x-4)^4=5.2.\sin 3x (\sin 3x)'.(\sin ^23x-4)^4$
$=30\sin 3x\cos 3x(\sin ^23x-4)^4$
$\Rightarrow k=30$
Lời giải:
$f'(x)=5(\sin ^23x-4)'(\sin ^23x-4)^4=5.2.\sin 3x (\sin 3x)'.(\sin ^23x-4)^4$
$=30\sin 3x\cos 3x(\sin ^23x-4)^4$
$\Rightarrow k=30$
Tìm đạo hàm của hso \(f\left(x\right)=\dfrac{x}{\left(1+x\right)\left(2+x\right)\left(3+x\right)...\left(2017+x\right)}\) có đạo hàm tại \(x_0=0\)?
Cho hai hàm số \(f\left(x\right),g\left(x\right)\) đều có đạo hàm trên R và thỏa mãn: \(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2.g\left(x\right)+36x=0\forall x\in R\). Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
A. A = -10
B. A = 10
C. A = 1
D. A = 9
tìm đạo hàm của hàm số sau
y=\(\sin\left(\cos^2x\right)\cos\left(\sin^2x\right)\)
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
Cho hàm số \(f\left(x\right)=x^2-3x+4\). Giải bất phương trình \(f\left(x-x^2\right)\ge0\)
tìm a, b, c để hso \(f\left(x\right)=ax^2+bx+c\) có đạo hàm \(f'\left(x\right)\) thỏa mãn \(f\left(x\right)+\left(x-1\right)f'\left(x\right)=3x^2\) voi mọi x thuoc R
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên R, thỏa mãn: \(2f\left(2x\right)+f\left(1-2x\right)=12x^2\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x=1\) là:
A. \(y=4x-2\)
B. \(y=2x+2\)
C. \(y=2x-6\)
D. \(y=4x-6\)
1. Đạo hàm của hàm số y= \(\left(x^3-5\right).\sqrt{x}\) bằng bao nhiêu?
2. Đạo hàm của hàm số y= \(\dfrac{1}{2}x^6-\dfrac{3}{x}+2\sqrt{x}\) là?
3. Hàm số y= \(2x+1+\dfrac{2}{x-2}\) có đạo hàm bằng?
Cho hàm số \(y=\dfrac{1}{3x^2-x-2}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3}{\left(3x+2\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{5}\left(\dfrac{3}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}\right)\)