Giải:
Ta có:
\(f\left(x\right)+3.f\left(\frac{1}{3}\right)=x^2\left(1\right)\)
\(\Rightarrow f\left(\frac{1}{x}\right)+3.f\left(x\right)=\frac{1}{x^2}\)
\(\Rightarrow3.f\left(\frac{1}{x}\right)+9.f\left(x\right)=\frac{3}{x^2}\left(2\right)\)
Lấy \(\left(2\right)-\left(1\right)\) ta được:
\(9.f\left(x\right)-f\left(x\right)=\frac{3}{x^2}-x^2\)
\(\Rightarrow f\left(x\right)=\frac{3-x^4}{8x^2}\)
\(\Rightarrow f\left(2\right)=\frac{3-2^4}{8.2^2}=\frac{-13}{32}\)
Vậy \(f\left(2\right)=\frac{-13}{32}\)
thêm điều kiện f(x) xác định mọi x khác 0."
Giải:
\(\left\{{}\begin{matrix}f\left(2\right)+3f\left(\dfrac{1}{2}\right)=2^2=4\left(1\right)\\f\left(\dfrac{1}{2}\right)+3f\left(2\right)=\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)
lấy (2) nhân 3 trừ (1)
\(8.f\left(2\right)=\dfrac{3}{4}-4=-\dfrac{13}{4}\Rightarrow f\left(2\right)=\dfrac{-13}{32}\)