Bài 11. Chứng minh rằng các hàm số sau đây luôn đồng biến với mọi số thực m ?
a: \(f\left(x\right)=\left(m^2+1\right)x+2m+1\)
b: \(f\left(x\right)=\dfrac{mx-1}{x+m}\)
xác đinh tính chẵn - lẻ của các hàm số sau:
a) \(f\left(x\right)=x\left|x\right|\)
b) \(\dfrac{\sqrt{1-x^2}}{x^3+x}\)
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
Tập xác định của hàm số y=\(\sqrt{x+1}+\dfrac{1}{\left|x\right|-2}\)là:
A.\(D\)=(-1;+∞)\\(\left\{\pm2\right\}\)
B.\(D\)=\([\)-1;+∞)\\(\left\{2\right\}\)
C.\(D\)=\([\)-1;+∞)\\(\left\{-2\right\}\)
D.1 đáp án khác
Tìm m để hàm số là hàm số chẵn
\(f\left(x\right)=\dfrac{x^2\left(x^2-2\right)+\left(2m^2-2\right)x}{\sqrt{x^2+1}-m}\)
\(A=\sqrt{\left(m+1\right)x+2m+3}\)
Tất cả giá trị nguyên m để A luôn xác định \(\forall x\in\left[-3;-1\right]\)
Cho các hàm số \(f\left(x\right)=x^2+2+\sqrt{2-x};g\left(x\right)=-2x^3-3x+5\)
\(u\left(x\right)=\left\{{}\begin{matrix}\sqrt{3-x};\left(x< 2\right)\\\sqrt{x^2-4};\left(x\ge2\right)\end{matrix}\right.\)
\(v\left(x\right)=\left\{{}\begin{matrix}\sqrt{6-x};\left(x\le0\right)\\x^2+1;\left(x>0\right)\end{matrix}\right.\)
Tính các giá trị \(f\left(-2\right)-f\left(1\right);f\left(-7\right)-g\left(-7\right);f\left(-1\right)-u\left(-1\right);u\left(3\right)-v\left(3;\right)v\left(0\right)-g\left(0\right);\dfrac{f\left(2\right)-f\left(-2\right)}{v\left(2\right)-v\left(-3\right)}\) ?
Tìm tập xác định của hàm số:
d: \(y=\left\{{}\begin{matrix}\dfrac{x-3}{x-4};x< 0\\\sqrt{x+1};x\ge0\end{matrix}\right.\)
e: \(\sqrt[4]{\sqrt{x^2+2x+5}-\left(x+1\right)}\)
1) Tìm tập xác định của các hàm số sau:
a) \(f\left(x\right)=\frac{1}{\sqrt{1-\sqrt{1+4x}}}\)
b) \(y=\frac{2\sqrt{x-1}}{\left|x\right|-2}\)
2) Tìm giá trị của tham số m để
a) Hàm số \(y=\frac{\sqrt{x}}{\sqrt{x-m}+1}\) có tập xác định là [0;+∞)
b) Hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên (-1;3)