Với \(y=1\Rightarrow\dfrac{x^2+x+1}{x+1}\in Z\Rightarrow\dfrac{1}{x+1}\in Z\Rightarrow\) ko tồn tại x nguyên dương thỏa mãn (loại)
Với \(y>1\):
Đặt \(\dfrac{x^2+x+1}{xy+1}=k\Rightarrow x^2-\left(ky-1\right)x+1-k=0\)
\(\Delta=\left(ky-1\right)^2+4\left(k-1\right)\) là số chính phương
Ta có: \(k\ge1\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
Đồng thời \(y>1\Rightarrow y\ge2\Rightarrow2ky\ge4k>3\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-2\right)^2+\left(2ky-3\right)+4\left(k-1\right)>\left(ky-2\right)^2\)
\(\Rightarrow\left(ky-2\right)^2< \left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-1\right)^2\)
\(\Rightarrow k=1\Rightarrow\dfrac{x^2+x+1}{xy+1}=1\)
\(\Rightarrow x^2+x=xy\Rightarrow y=x+1\)
\(\Rightarrow y-x=1\)