Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho \(\Delta ABC\) phân giác của \(\widehat{B}\) cắt AC tại D . Qua D, kẻ 1 đường thẳng cắt cạnh AB tại E sao cho \(\widehat{EDB}=\widehat{EBD}\) .Qua E, kẻ đường thẳng song song BD, cắt AC tại F
a) Chứng minh ED // BD
b) Chứng minh È là tia phân giác \(\widehat{AED}\)
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho \(\Delta ABC\) cân tại A có \(\widehat{A}=120\) độ . Các tia phân giác của \(\widehat{A}\) và \(\widehat{C}\) cắt nhau tại O và cắt các cạnh BC và AB lần lượt ở D và E. Tia phân giác góc ngoài tại B của \(\Delta ABC\) cắt đường thẳng AC tại F. C/minh:
a, \(BO\perp BF\)
b, \(\widehat{BDF}=\widehat{ADF}\)
c, Ba điểm D; E; F thẳng hàng
Cho \(\Delta ABC\) có \(\widehat{A}\) = 60o (AB \(\ne AC\)). Tia phân giác của \(\widehat{B}\) cắt AC tại D, tia phân giác của \(\widehat{C}\) cắt AB tại E. Hai tia phân giác đó cắt nhau tại I.
a) Tính \(\widehat{BIC}\)
b) CM: ID = IE
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha