Cho góc xOy (khác góc bẹt). Trên tia Ox lấy A. trên tia Oy lấy B sao cho OA= OB. Tia phân giác Oz của góc xOy cắt AB tại C
a) Chứng minh: tam giác AOC= tam giác BOC. Từ đó suy ra OC⊥⊥AB
b) Trên tia đối của tia CO lấy điểm D sao cho CD= CO. Chứng minh: AD=BO; AD//BO
c) Gọi M là trung điểm của AD. N là trung điểm của OB. Chứng minh: M, C, N thẳng hàng
a: Xét ΔOCA và ΔOCB có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOCA=ΔOCB