Hình vẽ:
Lời giải:
a)
Xét tam giác $OMA$ và $OMB$ có:
$\widehat{OAM}=\widehat{OBM}=90^0$
$OM$ chung
$\widehat{O_1}=\widehat{O_2}$ (do $Oz$ là tia phân giác $\widehat{xOy$)
$\Rightarrow \triangle OMA=\triangle OMB$ (ch-gn)
b)
Từ tam giác bằng nhau ở phần $a$ suy ra $\widehat{OMA}=\widehat{OMB}$
Lại có: $\widehat{AMD}=\widehat{BMC}$ (đối đỉnh)
$\Rightarrow \widehat{OMA}+\widehat{AMD}=\widehat{OMB}+\widehat{BMC}$
$\Leftrightarrow \widehat{OMD}=\widehat{OMC}$
Xét tam giác $OMD$ và $OMC$ có:
$OM$ chung
$\widehat{O_1}=\widehat{O_2}$
$\widehat{OMD}=\widehat{OMC}$
$\Rightarrow \triangle OMD=\triangle OMC$ (g.c.g)
$\Rightarrow OD=OC$
c)
Kéo dài $OM$ cắt $CD$ tại $K$
Xét tam giác $DOK$ và $COK$ có:
$\widehat{O_1}=\widehat{O_2}$
$OD=OC$ (cmt)
$OK$ chung
$\Rightarrow \triangle DOK=\triangle COK$ (c.g.c)
$\Rightarrow \widehat{OKD}=\widehat{OKC}$
Mà $\widehat{OKD}+\widehat{OKC}=180^0$
$\Rightarrow \widehat{OKD}=\widehat{OKC}=90^0$
$\Rightarrow OK\perp CD$ hay $OM\perp CD$
Làm ơn giúp mình đi mình đang ôn thi học kì