Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)
=> (x + 2y).5 = 2.(3x + 4y)
=> 5x + 10y = 6x + 8y
=> 10y - 8y = 6x - 5x
=> 2y = x
=> \(\frac{2y}{x}=1\)
Vậy \(\frac{2y}{x}=1\)
Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)
=> (x + 2y).5 = 2.(3x + 4y)
=> 5x + 10y = 6x + 8y
=> 10y - 8y = 6x - 5x
=> 2y = x
=> \(\frac{2y}{x}=1\)
Vậy \(\frac{2y}{x}=1\)
Tìm x; y; z biết:
\(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) và x + y - z = -10
Tìm x,y,z
\(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) và x + y - z = 16
Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
Cmr : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\).Chứng minh rằng\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).
cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)CMR \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho \(\frac{3x-2y}{4}=\frac{2x-4x}{3}=\frac{4y-3z}{2}\)
CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho \(\frac{3x-2y}{4}=\frac{2x-4x}{3}=\frac{4y-3z}{2}\)
CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Tìm các giá trị lớn nhất của biểu thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x-5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
a) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với a, b, c khác 0; b khác c). CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
b) Tìm các số nguyên n sao cho biểu thức sau là số nguyên: P = \(\frac{2n-1}{n-1}\)
c) Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)