Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k\left(2+10-7\right)}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k\left(2+10-7\right)}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Bài 11: Cho x, y, z thõa mãn: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\) với \(x,y,z\) khác 0. Tính: \(P=\frac{x-y+z}{x+2y-z}\)
Bài 1: Tìm x,y,z biết a) \(\frac{x}{y}=-\frac{6}{9}\) và x-y=30 b) \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\) và x+2y+z=40 c) \(\frac{x}{3}=\frac{y}{4},\frac{z}{5}=\frac{y}{7}\) và 2x+3y-z=106
cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)chứng minh rằng biểu thức sau có giá trị nguyên :
\(A=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Tìm các số x, y, z biết rằng:
a) \(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\);
b) \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\);
c) \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y-7}=x+y+z\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y-7}=x+y+z\)
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{x}{y+z+2}=\frac{y}{x+z+5}=\frac{z}{x+y+7}=x+y+z\)
biết \(\frac{x}{2}\)=\(\frac{7}{3}\) ; \(\frac{y}{5}\)=\(\frac{z}{4}\) và x-y+z = - 21
Khi đó giá trị của biểu thức A=/x+y-z/ là ..........
Cho các số x, y, z thỏa mãn \(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{z+x}\) (giả thiết các tỉ số đều có nghĩa)
Tính giá trị biểu thức P \(=\frac{2x+2y+2019z}{x+y-2020z}\)