Lời giải:
Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow a=ck; c=bk\)
Khi đó:
\(\frac{a^2+c^2}{b^2+c^2}=\frac{(ck)^2+c^2}{b^2+(bk)^2}=\frac{c^2(k^2+1)}{b^2(k^2+1)}=\frac{c^2}{b^2}=\frac{(bk)^2}{b^2}=k^2\)
\(\frac{a}{b}=\frac{ck}{b}=\frac{bk.k}{b}=k^2\)
\(\Rightarrow \frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)