Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\left(đpcm\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng :
a) \(\frac{a}{a-b}=\frac{c}{c-d}\)
b) \(\frac{a}{b}=\frac{a+c}{b+d}\)
Cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng
a. \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)
Chứng minh rằng:nếu \(\frac{x+2}{x-2}=\frac{y+3}{y-3}\)thì\(\frac{x}{2}=\frac{y}{3}\)
Cho a, b, c, d là các số hữu tỉ dương và \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng: (a+2c).(b+d)=(a+c).(b+2d)
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\){a ;b;c;d≠0;a≠b;c≠d} chứng minh \(\frac{a}{c}\)=\(\frac{a-b}{c-d}\)
Cho \(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-d}{c}\)(với đk a+b+c+d khác 0) . Tính giá trị bthuc:
\(P=\left(1+\frac{b+c}{a}\right).\left(1+\frac{c+d}{b}\right).\left(1+\frac{d+a}{c}\right).\left(1+\frac{a+b}{d}\right)\)
Biết Chứng minh rằng
Cho x=\(\frac{a}{b};\ y=\frac{c}{d};\ z=\frac{a}{b}+\frac{c}{d}\left(a,b,c,d\ thuộc\ Z\ ;\ b>0,d>0\right)\)
cho \(\frac{c}{d}\)<\(\frac{a}{b}\)<1 với a,b,c,d là số nguyên dương. so sánh \(\frac{c}{d}\), \(\frac{a}{b}\)với \(\frac{a+d}{b+c}\)
Cho a + c = 2b và 2bd = c (b + d); b, d # 0. CMR: \(\frac{a}{b}=\frac{c}{d}\)