Gọi \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)a=kb ; c=kd
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
Vậy...
Gọi \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)a=kb ; c=kd
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
Vậy...
cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
giúp mình nha mình đang cần gấp
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Câu hỏi:
a, Ba đường cao của tam giác ABC có độ dài là 4,12,a. Biết rằng a là một số từ nhiên. Tìm a?
b, Chứng minh rằng tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0.a\ne b,c\ne d\right)\)ta suy đc các tỉ lệ thức
1,\(\frac{a}{a-b}=\frac{c}{c-d}\) 2,\(\frac{a+b}{b}=\frac{c+d}{d}\)
Giúp mình với nha! Thak các bạn nhìu!
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0.\) Chứng tỏ ràng nếu a\(\ne\pm b,c\ne\pm d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\).
Giúp mình với, mai minh đi học rùi. Thanks các bạn nhiều.
bài 1: chứng minh rằng : Nếu \(\frac{a+b}{a-b}\)= \(\frac{c+d}{c-d}\) thì \(\frac{a}{b}\)= \(\frac{c}{d}\)
bài 2: Cho x-y= 7
tính giá trị biểu thức B = (\(\frac{3x-7}{2x+y}\)) - \(\frac{3y+7}{2y+x}\)
Giải ra nhanh giúp mình nha mình đg cần rất gấp
Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+a}\right)^3=\frac{a}{d}\)
GIÚP MÌNH VỚI Ạ!
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(\left(a+b+c+d\ne0\right)\)Tìm M = \(\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\)