Bài 3: Đạo hàm của hàm số lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Gia Ân

Cho \(f\left(x\right)=\sin^2ax.\cos bx\). Tìm \(f^{\left(n\right)}\left(x\right)\)

Nguyễn Thái Bình
7 tháng 5 2016 lúc 20:56

Ta có : \(f\left(x\right)=\frac{1-\cos2ax}{2}.\cos bx=\frac{1}{2}\cos bx-\frac{1}{2}\cos2ax.\cos bx\)

                    \(=\frac{1}{2}\cos bx-\frac{\cos\left(2a+b\right)x+\cos\left(2a-b\right)x}{4}\)

                    \(=\frac{1}{2}\cos bx-\frac{1}{4}\cos\left(2a+b\right)x-\frac{1}{4}\cos\left(2a-b\right)x\)

\(f^{\left(n\right)}\left(x\right)=\frac{1}{2}.b^n\cos\left(bx+\frac{b\pi}{2}\right)-\frac{1}{4}\left(2a+b\right)^n\cos\left[\left(2a+b\right)x+\frac{n\pi}{2}\right]-\frac{1}{4}\left(2a-b\right)^n\cos\left[\left(2a-b\right)x+\frac{n\pi}{2}\right]\)

Áp dụng : Khi a=1,b=2 tức là nếu \(f\left(x\right)=\sin^2x\cos2x\) ta có :

\(f^{\left(n\right)}\left(x\right)=\frac{1}{2}.2^n\cos\left(2x+\frac{n\pi}{2}\right)-\frac{1}{4}.4^n\cos\left(4x+\frac{n\pi}{2}\right)\)

            \(=2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)-4^{n-1}\cos\left(4x+\frac{n\pi}{2}\right)\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phan Trần Quốc Bảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lĩnh Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết