Bài 3: Đạo hàm của hàm số lượng giác

Bài 1 (SGK trang 168)

Hướng dẫn giải

a) = = .

b) = = .

c) = = .

d) y' =\(\dfrac{\left(x^2+7x+3\right)'\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(x^2-3x\right)'}{\left(x^2-3x\right)^2}\)=\(\dfrac{\left(2x+7\right)\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(2x-3\right)}{\left(x^2-3x\right)^2}\)=\(\dfrac{-2x^2-6x+9}{\left(x^2-3x\right)^2}\)

(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 2 (SGK trang 168)

Hướng dẫn giải

a) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y'<0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠1 và x2 -2x -3 <0

<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).

b) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’≥0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3

<=> x∈ (-∞;-3] ∪ [1;+∞).

c).Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’>0 <=>
dao-ham-cua-ham-so-luong-giac<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=> dao-ham-cua-ham-so-luong-giac <=> x∈ dao-ham-cua-ham-so-luong-giac vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.

(Trả lời bởi Minh Hải)
Thảo luận (2)

Bài 3 (SGK trang 169)

Hướng dẫn giải

a) y' = 5cosx -3(-sinx) = 5cosx + 3sinx;

b) = = .

c) y' = cotx +x. = cotx -.

d) + = = (x. cosx -sinx).

e) = = .

f) y' = (√(1+x2))' cos√(1+x2) = cos√(1+x2) = cos√(1+x2).

 

(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 4 (SGK trang 169)

Hướng dẫn giải

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.

Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó

y' = -16x3 +108x2 -162x -2.

b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.

c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .

d) y' = 2tanx.(tanx)' - (x2)' = .

e) y' = sin = sin.


(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 5 (SGK trang 169)

Hướng dẫn giải

Ta có f'(x) = 2x, suy ra f'(1) = 2

và φ'(x) = 4 + . cos = 4 + . cos, suy ra φ'(1) = 4.

Vậy = = .

(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 6 (SGK trang 169)

Hướng dẫn giải

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

(Trả lời bởi Hà An)
Thảo luận (1)

Bài 7 (SGK trang 169)

Hướng dẫn giải

a) f'(x) = - 3sinx + 4cosx + 5. Do đó

f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5

<=> sinx - cosx = 1. (1)

Đặt cos φ = , (φ ∈) => sin φ = , ta có:

(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1

<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.

b) f'(x) = - cos(π + x) - sin = cosx + sin.

f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin

<=> = + k2π hoặc = π - x + + k2π

<=> x = π - k4π hoặc x = π + k, (k ∈ Z).


(Trả lời bởi Đặng Phương Nam)
Thảo luận (1)

Bài 8 (SGK trang 169)

Hướng dẫn giải

Lời giải:

a) Ta có f'(x) = 3x2 + 1, g(x) = 6x + 1. Do đó

f'(x) > g'(x) <=> 3x2 + 1 > 6x + 1 <=> 3x2 - 6x >0

<=> 3x(x - 2) > 0 <=> x > 2 hoặc x > 0 <=> x ∈ (-∞;0) ∪ (2;+∞).

b) Ta có f'(x) = 6x2 - 2x, g'(x) = 3x2 + x. Do đó

f'(x) > g'(x) <=> 6x2 - 2x > 3x2 + x <=> 3x2 - 3x > 0

<=> 3x(x - 1) > 0 <=> x > 1 hoặc x < 0 <=> x ∈ (-∞;0) ∪ (1;+∞).



(Trả lời bởi Đặng Phương Nam)
Thảo luận (1)

Bài 3.1 (Sách bài tập trang 206)

Bài 3.2 (Sách bài tập trang 206)