Bài 3: Đạo hàm của hàm số lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lĩnh Nguyễn

Cho hàm số f(x)=\(sin^2\left(\dfrac{\pi}{6}-x\right)+sin^2\left(\dfrac{\pi}{6}+x\right)\) . Chứng minh rằng f '(x)=sin2x

Akai Haruma
22 tháng 4 2018 lúc 0:22

Lời giải:

Ta có:

\(f(x)=\sin ^2\left(\frac{\pi}{6}-x\right)+\sin ^2\left(\frac{\pi}{6}+x\right)\)

\(\Rightarrow f'(x)=2\sin \left(\frac{\pi}{6}-x\right).-\cos \left(\frac{\pi}{6}-x\right)+2\sin \left(\frac{\pi}{6}+x\right)\cos \left(\frac{\pi}{6}+x\right)\)

\(f'(x)=-\sin 2\left(\frac{\pi}{6}-x\right)+\sin 2\left(\frac{\pi}{6}+x\right)\)

Áp dụng công thức: \(\sin a-\sin b=2\cos \frac{a+b}{2}\sin \frac{a-b}{2}\) suy ra:

\(f'(x)=-\sin \left(\frac{\pi}{3}-2x\right)+\sin \left(\frac{\pi}{3}+2x\right)\)

\(f'(x)=2\cos \left(\frac{\pi}{3}\right)\sin 2x=\sin 2x\) (đpcm)

 


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
LY SA
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết