Ta có \(f\left(x\right)=\sin ax\)
\(f'\left(x\right)=a\cos ax=a\sin\left(ax+\frac{\pi}{2}\right)\)
\(f''\left(x\right)=a^2\cos\left(ax+\frac{\pi}{2}\right)=a^2\sin\left(ax+\frac{\pi}{2}+\frac{\pi}{2}\right)\)
\(f'''\left(x\right)=a^3\cos\left(ax+\pi\right)=a^3\sin\left(ax+\pi+\frac{\pi}{2}\right)=a^3\sin\left(ax+\frac{3\pi}{2}\right)\)
Dự đoán \(f^{\left(n\right)}\left(x\right)=a^n\sin\left(ax+\frac{n\pi}{2}\right)\left(1\right)\)
(1) được chứng minh bằng quy nạp như sau :
- (1) đúng khi n = 1,2,2
- Giả sử (1) đã đúng đến n. Ta phải chứng minh
\(f^{\left(n+1\right)}\left(x\right)=a^{n+1}\sin\left(ax+\frac{\left(n+1\right)\pi}{2}\right)\)
Theo giả thiết quy nạp ta có :
\(f^{\left(n+1\right)}\left(x\right)=\left(f^{\left(n\right)}\left(x\right)\right)'=\left(a^n\sin\left(ax+\frac{n\pi}{2}\right)\right)=a^n.a\cos\left(ax+\frac{n\pi}{2}\right)=a^{n+1}\sin\left(ax+\frac{n\pi}{2}+\frac{n\pi}{2}\right)=a^{n+1}\sin\left(ax+\frac{\left(n+1\right)\pi}{2}\right)\)
Vậy (2) đúng.
Theo nguyên lý quy nạp suy ra (1) đúng.
Như vậy ta có :
\(f^{\left(n\right)}\left(x\right)=a^n\sin\left(ax+\frac{n\pi}{2}\right)\)