§3. Phương trình elip

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
@a01900420005

Cho (E): x^2/4 + y^2/1 = 1 và điểm C (2; 0). Tìm tọa độ các điểm A và B thuộc (E) sao cho tam giác ABC là tam giác đều

Nguyễn Việt Lâm
13 tháng 5 2021 lúc 20:27

Do C là 1 đỉnh trên trục lớn của elip đồng thời tam giác ABC đều \(\Rightarrow\) AB vuông góc trục lớn elip \(\Rightarrow\)A và B nằm về 2 phía trục hoành. Giả sử A là điểm có tung độ dương

Gọi H là trung điểm AB \(\Rightarrow H\in Ox\Rightarrow H\left(h;0\right)\) đồng thời \(x_A=x_H=h\) và \(\left|h\right|< 2\)

\(\dfrac{h^2}{4}+\dfrac{y_A^2}{1}=1\Rightarrow y_A=\sqrt{1-\dfrac{h^2}{4}}\)

Tam giác ABC đều \(\Rightarrow\widehat{ACB}=60^0\Rightarrow\widehat{ACH}=30^0\)

\(tan30^0=\dfrac{AH}{CH}=\dfrac{y_A}{x_C-x_H}=\dfrac{\sqrt{1-\dfrac{h^2}{4}}}{2-h}=\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow12-3h^2=4\left(2-h\right)^2\)

\(\Leftrightarrow7h^2-16h+4=0\Rightarrow\left[{}\begin{matrix}h=\dfrac{2}{7}\\h=2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow y_A=\sqrt{1-\dfrac{h^2}{4}}=\dfrac{4\sqrt{3}}{7}\)

Vậy tọa độ 2 điểm A và B là \(\left(\dfrac{2}{7};\dfrac{4\sqrt{3}}{7}\right)\) và \(\left(\dfrac{2}{7};-\dfrac{4\sqrt{3}}{7}\right)\)


Các câu hỏi tương tự
HỒ ĐĂNG BẢO
Xem chi tiết
Thảo Trang
Xem chi tiết
Thái Anh Tôn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hải Minh Lê
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết