Từ một điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm).
1) Chứng minh rằng: 4 điểm A, B, C, O cùng nằm trên một đường tròn. 2) Chứng minh rằng: AO vuông góc BC tại trung điểm H của BC. 3) Chứng minh rằng: \(\dfrac{OB^2}{AC^2}=\dfrac{HO}{HA}\) 4) Từ điểm M nằm trên cung lớn BC, kẽ tiếp tuyến thứ 3 với đường tròn tâm O, tiếp tuyến này cắt AB, AC theo thứ tự tại D và E. Biết AD = 7cm, AE = 25cm, DE= 24cm. Tính độ dài các đoạn thẳng AB và BC.
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
cho điểm a nằm ngoài đường tròn (o;r). từ a vẽ các tiếp tuyến ab, ac với đường tròn. (b,c là tiếp điểm). gọi h là giao điểm của ao và bc.
a) Chứng minh BC vuông góc với AO
b) Chứng minh BC^2 = 4.HA.HO
Câu 7: Từ điểm A nằm ngoài đường tròn (O; R) sao cho OA = 2R vẽ tiếp tuyến AB với đường tròn
(B là tiếp điểm).
a) Tính theo R độ dài AB.
b) Đường cao BH của tam giác ABO kéo dài cắt đường tròn (O) tại C. Chứng minh rằng AC là
tiếp tuyến của đường tròn (O).
c) Gọi E là giao điểm của OA với đường tròn (O) (E nằm giữa O và A). Chứng minh rằng E là
tâm đường tròn nội tiếp tam giác ABC.
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
Cho đường tròn (O) có bán kính R và một điểm A sao cho OA=2R, vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Vẽ đường kính BOD a)Chứng minh 4 điểm A,B,O,C cùng thuộc một đường tròn b)Chứng minh DC//OA c)Đường trung trực của BD cắt AC và BD lần lượt tại S và E. Chứng minh tứ giác OCEA là hình thang cân
Cho đường tròn tâm ( và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC. a) Chứng minh: AO là đường trung trực của BC và BC= 4.OH. HA. b) AO cắt đường tròn (O) tại I và K ( 1 nằm giữa A và O). Chứng minh: tam giác KBI vuông và AI. KH=IH. KA.
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ⊥ BC và OA // BD
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE . AD = AH . AO
Giúp em với ạ! Em cảm ơn nhiều!!
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Vẽ hình thôi ạ
Cho đường tròn tâm O bán kính R và một điểm A nằm ngòi đường tròn . qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . tia Ax nằm giữa A,B và AO cắt đường tròn (O;R) tại hai điểm C và D( C nằm giữa A và D) . gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H . a,Tính OH. OA theo R .b, Chứng minh bốn điểm A,B,M,O cùng thuộc một đường tròn . c,Gọi E là giao của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn