Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ An

Cho đường tròn(O). Đường kính BC và 1 điểm A nằm ngoài đường tròn.Các đường thẳng AB,AC cắt (O) tại D và E.BE và CD cắt nhau tại H.

a) chứng minh :AH⊥BC

b)Gọi F là giao điểm của AH và BC

AD.AB=AE.AC=AH.AF

c) chứng tỏ:FB.FC=FH.FA

Nhiên An Trần
20 tháng 11 2018 lúc 10:17

Violympic toán 9

a, \(\Delta BCD\) nội tiếp đường tròn (O), BC là đường kính nên \(\Delta BCD\)vuông tại D \(\Rightarrow CD\perp AB\)

Chứng minh tương tự ta có \(\Delta BEC\) vuông tại E \(\Rightarrow BE\perp AC\)

\(\Delta ABC\) có: \(CD\perp AB,BE\perp AC,CD\cap BE=\left\{H\right\}\)nên H là trực tâm của \(\Delta ABC\Rightarrow AH\perp BC\)

b, Dễ dàng chứng minh được \(\Delta AEB \sim \Delta ADC(g-g)\)\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AB}{AC}\Rightarrow AD.AB=AE.AC\)(1)

Chứng minh tương tự ta có: \(\Delta AHE \sim \Delta ACF (g-g)\)\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AF}\Rightarrow AH.AF=AE.AC\)(2)

Từ (1), (2) \(\Rightarrow AD.AB=AE.AC=AH.AF\)

c, Xét \(\Delta HFB\)\(\Delta CFA\) có:

\(\hat{HFB}=\hat{AFC}=90^o\)

\(\hat{HBF}=\hat{CAF}\)(cùng phụ với \(\hat{ACF}\))

\(\Rightarrow \Delta HFB \sim \Delta CFA (g-g)\)\(\Rightarrow\dfrac{FB}{FA}=\dfrac{FH}{FC}\Rightarrow FB.FC=FH.FA\)


Các câu hỏi tương tự
15 - 9/9 Nguyễn Huỳnh Hà...
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Tiểu Bạch Kiểm
Xem chi tiết
nguyen thi hoa trinh
Xem chi tiết
Ngọc Phương Phạm Thị
Xem chi tiết
Ngọc Phương Phạm Thị
Xem chi tiết
16 Huỳnh Tuấn Kiệt
Xem chi tiết
nguyen ngoc son
Xem chi tiết