Cho đường trong tâm (O;R). Một điểm A nằm bên ngoài (O) sao cho OA = 2R . Vẽ tiếp tuyến AB với (O) (B là tiếp tuyến) .Từ điểm B vẽ dây BC vuông góc với AO tại H a) c/m H là trung điểm của BC và AC là tiếp tuyến của (O) b) c/m tích OH.OA không đổi khi A chuyển động bên ngoài (O) c) c/m tam giác ABC là tam giác đều và tính số đo các cung BC của (O) d) tia CO cắt (O) tại điểm thứ hai là D. C/m BD//AO
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC và OH là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: OH*OA=OB^2=R^2 ko đổi
c: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2
nên góc OAB=30 độ
=>góc BAC=60 độ
mà BA=AC
nên ΔBAC đều
góc BOC=180-60=120 độ
=>sđ cung nhỏ BC là 120 độ
=>sđ cung lớn BC là 360-120=240 độ
d: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
=>ΔCBD vuông tại B
=>DB//OA