Cho đường tròn tâm (O),có bán kính r,điểm K nằm bên ngoài đường tròn.Kẻ hai tiếp tuyến KA,KB với đường tròn tâm (O) (A,B là các tiếp điểm).
a)bốn điểm K,A,O,H cùng thuộc một đường tròn
b)vẽ đường kính AC của đường tròn tâm (O).cm BC // KO
c)cm BC.KO=2R\(^2\).Tính diện tích tam giác ABC theo R,biết OK=2R.
a: Xét tứ giác KAOB có
góc KAO+góc KBO=180 độ
nên KAOB là tứ giác nội tiếp
b: Xét (O) có
KA,KB là các tiếp tuyến
nên KA=KB
mà OA=OB
nên OK là trung trực của BA
=>OK vuông góc với AB(1)
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔBCA vuông tại B
=>BC vuông góc với BA(2)
Từ (1), (2) suy ra BC//KO