Cho đường tròn (O)đường kính AB. Trên tia đối của tia AB lấy điểm C
(C không trùng với B). Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại E.
a) Chứng minh rằng tứ giác AODE nội tiếp.
b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn (O) (K không trùng với B). Chứng minh \(E\widehat{H}K=K\widehat{B}A\)
Cho nửa đường tròn \(\left(O;R\right)\); đường kính AB. Trên cùng 1 nửa mặt phẳng bờ AB dựng tiếp tuyến Ax, By của nửa đường tròn. Lấy 1 điểm M trên nửa đường tròn O. Tiếp tuyến tại M của O cắt Ax, By lần lượt tại D và C. Tia AM và BM kéo dài cắt By, Ax lần lượt tại F và E.
a) Dựng \(MH\perp AB\). CM: \(AC;BD\) đi qua trung điểm I của MH
c) Chứng minh: \(EO\perp AC\)
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho đường tròn tâm O, đường kính AB, điểm I thay đổi trên đoạn OA ( khác A). Đường thẳng qua I vuông góc với AB cắt (O) tại C và D. Trên tia đối của tia BA lấy điểm S cố định. Đoạn CS cắt (O) tại M, gọi E là giao điểm của DM và AB.
a) Chứng minh tam giác SBC và tam giác SMA đồng dạng.
b) Chứng minh độ dài đoạn OE không phụ thuộc vào vị trí của điểm I.
Cho nửa đường tròn tâm (O) đường kính AB . Vẽ hai tiếp tuyến Ax , By với nửa đường tròn . M là 1 điểm bất kì trên nửa đường tròn . Qua M vẽ đường tiếp tuyến với cắt đường tròn cắt Ax , By thứ tự tại D,C Chứng minh : a) 4 điểm A,D,M,O cũng thuộc 1 đường tròn b) Đường tròn đường kính CD nhận AB là tiếp tuyến
Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) . a) Chứng minh: OA vuông góc với BC tại H. b) Vẽ đường thẳng vuông góc với OB tại O cắt cạnh AC tại E. Chứng minh: ∆OAE là tam giác cân. c) Trên tia đối của tia BC lấy điểm Q. Vẽ hai tiếp tuyến QM, QN đến (O) (M, N là tiếp tuyến). Chứng minh: 3 điểm A, M, N thẳng hàng
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2