Cho đường tròn tâm O và đường kính AB và CD vuông góc với nhau, trên cùng nhỏ BC lấy điểm M ,MA Cắt CD tại I .
Cho (O), đường kính AB, vẽ dây cung CD vuông góc với OA. Lấy điểm M trên cung nhỏ BC (M<>C, M<>B), MA cắt CD tại H, trên MD lấy điểm E sao cho MC=ME. Chứng minh tứ giác ADEH nội tiếp
. Cho (O), đường kính AB, I là điểm nằm giữa 2 điểm O và A. Đường thẳng vuông góc với AB tại I cắt đường tròn tại 2 điểm C và D. Lấy điểm H thuộc cung BC nhỏ, tiếp tuyến của đường tròn (O) tại H cắt đường thẳng CD tại S
a) Nối AH cắt CD tại K. Chứng minh: T/g BHKI nội tiếp
b) C/m: SK = SH c) C/m: SC.SD = SH2
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho đường tròn tâm O bán kính R, hai điểm C và D thuộc đường tròn, B là điểm chính giữa cung nhỏ CD . Kẻ đường kính BA, trên tia đối của BA lấy điểm S , nối S với C cắt (O) tại M , MD cắt AB tại K, MB cắt AC tại H.
a) Chứng minh góc BMD bằng góc BAC. Từ đó suy ra tứ giác AMHK nội tiếp
b) Chứng minh HK // CD
Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kể dây CD vuông góc AB tại H. Trên cung nhỏ AC lấy điểm E. Kẻ CK vuông góc AE tại K. Đường thẳng DE cắt CK tại F.
a) T/g AHCK nội tiếp
b) AH.AB=AD^2
c) Tam giác ACF là tam giác cân
ai chỉ em câu b vs ạ
Cho đường tròn (O) đường kính AB, gọi I là trung điểm của OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H.
a) Chứng minh tứ giác BIHK nội tiếp
b) Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K
c) Kẻ DN ⊥ CB , DM ⊥ AC. Chứng minh các đường thẳng MN, AB, CD đồng quy