a: Sửa đề; (O;5cm)
HA=HD=AD/2=4cm
=>OH=3cm
=>HB=5-3=2cm
b:
Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
\(AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\)
a: Sửa đề; (O;5cm)
HA=HD=AD/2=4cm
=>OH=3cm
=>HB=5-3=2cm
b:
Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
\(AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\)
ii. IO vuông góc với AC và BD
d) Chứng minh rằng: IA = IC; IB = ID; BC = AD. Tính T = \(IA^2+IB^2+IC^2+ID^2\)
BT : Cho đường tròn (O;R) , đường kính AB và điểm C thuộc đường tròn (O) sao cho BC=R . Gọi H là trung điểm của dây cung AC . Tiếp tuyến tại C của (O) cắt tia OH tại D ,
a) C/minh : ACB=90
b) Tính độ dài đoạn thẳng DC
c) C/minh : DA là tiếp tuyến tại A của đường tròn (O)
* Hình vẽ : ( mình o biết có đúng không nhưng mọi người làm giúp mình nha)
Cho đường tròn (O), đường kính AB,dây AC không đi qua tâm O(AC<BC).Gọi H là trung điểm của AC.a)Tính góc ACB,chứng minh OH\\BC. b) Tiếp tuyến tại C của đường tròn O cắt tia OH tại M.Chứng mình MA là tiếp tuyến tại A của đường tròn O. c) Cho AB=10cm,BC=8cm.Tính chủ vi tam giác AMC. d) Kẻ CK vuông góc với AB tại K.Đoạn thẳng MB cắt đoạn thẳng CK tại I.Chứng mình I là trung điểm của CK
cho đường tròn (O) và BC là đây cung cố định nhỏ hơn đường kính .Lấy điểm A trên cung lớn BC sao cho Δ ABC nhọn và AB<AC .Gọi AD,BE,CF là các đường cao của tam giác ABC . Gọi M là giao điểm của EF và BC
a, cm : MB.MC=ME.MF
b, đường thẳng đi qua D và song song với EF , cắt AB và AC lần lượi tại P và Q .
cm : Δ DEF là tam giác cân tại D
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
Cho tam giác ABC có đường cao AD và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh:
a, Bốn điểm E, F, I, K cùng thuộc một đường tròn
b, Điểm D cũng thuộc đường tròn đi qua bốn điểm E, I, F, K
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Gọi I là trung điểm của dây cung AB không đi qua tâm của (O; R) . Qua I vẽ dây CD
a) chứng tỏ CD>=AB. Tìm độ dài nhỏ nhất , lớn nhất của các dây quay quanh I
b) cho R=5cm; OI=4cm. Tính độ dài dây cung ngắn nhất qua I
c) chứng tỏ: góc OAI > góc ODI