1: góc AIK=1/2(sd cung BM+sđ cung AN)
=1/2(sđ cung BM+sđ cung AM)
=1/2sđ cung AB
=góc ACB
=>góc BIK+góc BCA=180 độ
=>BIKC nội tiếp
1: góc AIK=1/2(sd cung BM+sđ cung AN)
=1/2(sđ cung BM+sđ cung AM)
=1/2sđ cung AB
=góc ACB
=>góc BIK+góc BCA=180 độ
=>BIKC nội tiếp
Bài 6:Cho đường tròn tâm O đường kính AB cố định.điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\)AO.Kẻ dây cung MN vuông góc với AB tại I.Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C ko trùng với M,N và B,Nối AC cắt MN tại E.Chứng minh
a)Tứ giác IECB nội tiếp đường tròn
b)AE.AC=AM\(^2\)
Cho nửa đường tròn tâm O đường kính AB. Trên nữa đường trong lấy 2 điểm C và D sao cho cung AC bé hơn cung AD(D khác B). Hai dây AD và BC cắt nhau tại M. Vẽ MN vuông góc với AB tại N
a/ Chứng minh rằng tứ giác ACMN nội tiếp được trong một đường tròn
b/ Chứng minh rằng AM.AD=AN.AB
Cho (O;R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C sao cho đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau ở E.
a, C/m tứ giác AHEK nội tiếp
b, Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. C/m: ΔNFK cân và EM.NC = EN.CM
Cho đường tròn (O; R) và dây MN không đi qua tâm O. Kẻ đường kính AB vuông góc với MN tại E. Lấy điểm C thuộc dây MN. BC cắt đường tròn (O;R) tại K. a) Chứng minh: Tứ giác AKCE nội tiếp b) Gọi I là giao điểm của AK và MN, D là giao điểm của AC và BI. Chứng minh C cách đều 3 cạnh của tam giác DEK
cho nửa đường tròn ( o; r) đường kính ab. dây mn = r ( m thuộc cung nhỏ an) tia am cắt tia bn tại k, an cắt bm tại i. 1, cm: tứ giác kmin nội tiếp 2, cm: kn.ka=kn.kb 3. tính theo r độ dài đường thẳng ik 4 cho M , N di chuyển trên nửa đường tròn ( MN = R ) . xác định vị trí của M và N để diện tích tam giác KAB lớn nhất
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC . Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC . Hai dây AN và CM cắt nhau tại điểm I . Dây MN cắt cạnh AB và BC lần lượt tại các điểm H và K
1. Chứng minh 4 điểm C , N , K . I cùng thuộc 1 đường tròn
2. Chứng minh NB^2 = NK.NM
Cho đường tròn tâm O đường kính AB.Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O).Lấy điểm E trên cung nhỏ BC,E khác B và C,AE cắt CD tại F.
Chứng minh:
a. BEFI là tứ giác nội tiếp đường tròn.
b. AE . AF = AC^2
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.