Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.
Cho đường tròn (O)đường kính AB. Trên tia đối của tia AB lấy điểm C
(C không trùng với B). Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại E.
a) Chứng minh rằng tứ giác AODE nội tiếp.
b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn (O) (K không trùng với B). Chứng minh \(E\widehat{H}K=K\widehat{B}A\)
Cho đường tròn O và đường thẳng d đi qua đường tròn nhưng không qua O
Lấy d cắt O tại hai điểm A,B . chọn điểm M thuộc O nằm ngoài đoạn AB
kẻ MC,MD là tiếp tuyến của (O), ( C,D thuộc (O) )
Kẻ hai tiếp tuyến của (O) cắt (O) tại A,B
giao điểm hai tiếp tuyến đó là I
CMR I,C,D thẳng hàng
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định
Từ điểm M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MC,MD với đường tròn (C;D là tiếp tuyến ) .
a, Chứng minh : MO cắt CD
b, Đường thẳng MO cắt đường tròn tại A,B ( A nằm giữa M và O ) và cắt CD tại H.
c, Chứng minh : HA^2 + HB ^2 +CD^2/2 = 4R^2
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho tam giác ABC nội tiếp đường tròn (O). I là trung điểm , M là điểm nằm trên đoạn CI ( M khác C và I , đường thẳng AM cắt đường tròn (O) tại điểm D. Tiếp tuyến của đường tròn ngoại tiếp tam giác AMI tại M cắt đường thẳng BD, CD lần lượt tại P và Q. Chứng minh rằng DM.AI = MP.IC và tính tỉ số \(\dfrac{MP}{MQ}\) .
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)
cho (O, R), lấy điểm O cách A một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K
a, Chứng minh: Tam giác OKA cân tại K
b, Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O)