a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
=>ΔMAB cân tại M
mà góc AMB=60 độ
nên ΔMAB đều
c: Xét (O) có
ΔABC nội tiếp
AC là đường kính
DO đó: ΔABC vuông tại B
=>AB vuông góc với BC
=>BC//OM
=>OMBC là hình thang
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
=>ΔMAB cân tại M
mà góc AMB=60 độ
nên ΔMAB đều
c: Xét (O) có
ΔABC nội tiếp
AC là đường kính
DO đó: ΔABC vuông tại B
=>AB vuông góc với BC
=>BC//OM
=>OMBC là hình thang
Cho đường tròn O từ một điểm M ngoài O vẽ hai tiếp tuyến MA và MB( a, b là tiếp điểm )sao cho góc AMB bằng 60 độ Biết chu vi tam giác MAB là 18 cm Tính diện tích tứ giác OAMB
Cho đường tròn o , điểm M nằm ngoài đường tròn . kẻ các tiếp tuyến MA,MB với đường tròn (B,C là các tiếp điểm) a,Chứng minh ∆AMB cân b,Cho góc AMB=60°.Tính gócAOB c,Chứng minh MO vuông góc AB
Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn . Qua M vẽ hai tiếp tuyến MA , MB với đường tròn (O) trong đó A , B là hai tiếp điểm sao cho AMB = 90 độ . Qua điểm C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn (o) cắt MA , MB tại P vs Q .
CMR : 1/3 ( MA + MB ) < PQ < 1/2 ( MA + MB)
o l m . v n
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Cho đường tròn (O), điểm M nằm bên ngoài đường tròn. Kẻ tiếp tuyến MD, ME với đường tròn (D, E là các tiếp điểm). Qua điểm I thuộc cung nhỏ DE, kẻ tiếp tuyến với đường tròn, cắt MD và ME theo thứ tự ở P và Q. Biết MD = 4cm, tính chu vi tam giác MPQ ?
Cho đường tròn (O; 2cm), các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B và C là các tiếp điểm)
a) Tứ giác ABOC là hình gì ? Vì sao ?
b) Gọi M là điểm bất kì thuộc cung nhỏ BC. Qua M kẻ tiếp tuyến với đường tròn, cắt AB và AC theo thứ tự tại D và E. Tính chu vi tam giác ADE ?
c) Tính số đo góc DOE ?
3. Cho đường tròn (O;3) và điểm A nằm ngoài đường tròn sao cho OA = 5.
Kẻ các tiếp tuyến AB, AC tới đường tròn (B, C là các tiếp điểm). Kẻ đường
kính CD của đường tròn.
a) Tính chu vi của tam giác BCD.
b) Kẻ BH vuông góc với CD tại H. Chứng minh rằng AD đi qua trung điểm
của BH
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
a) Chứng minh rằng OA vuông góc với BC
b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO
c) Tính độ dài các cạnh của tam giác ABC; Biết OB = 2cm, OA = 4cm